Course Code: 19ME0325	R19
SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY:: Siddharth Nagar, Narayanavanam Road — 517583 <u>QUESTION BANK (DESCRIPTIVE)</u>	<u>PUTTUR</u>
Subject with Code: OPERATIONSRESARCH (19ME0325) Course & Branch : Regulation: R19 <u>UNIT — I</u> Year & Semester <u>INTRODUCTION TO OR AND LINEAR PROGRAMMING</u>	B.Tech - MECH : IV-B Tech & 1
1. Solve the following LPP Minimize $Z = X_1 - 3X_2 + 3X_3$ Subjected to $3X_1 - X_2 + 2X_3 \le 7$, $2X_1 + 4X_2 \ge -12$, $-4X_1 + 3X_2 + 8X_3 \le 10$ and $X_1, X_2, X_3 \ge 0$	L3 CO1 12M
 Solve the following by using Big-M method. Maximize Z=2X₁+3X₂+4X₃, Subjectedto3X₁+X₂+4X₃≤600, 2X₁+4X₂+2X₃≥480, 2X₁+3X₂+3X₃=540 and X₁,X₂,X₃≥0. 	L3 CO1 12M
3. Solve the following LPP using Simplex method. Maximize Z=3X ₁ +5X ₂ +4X ₃ , Subjected to: $2X_1+3X_2 \le 8$, $2X_2+5X_3 \le 10$, $3X_1+2X_2+4X_3 \le 15$ and $X_1, X_2, X_3 \ge 0$	L3 CO1 12M
 4. Solve the following problem by using Big-M- method Maximize z=X1+2X2+3X3-X4, subjected to :X1+2X2+3X3≤15, 2X1+X2+5X3≥20,X1+2X2+X3+X4=10 and X1,X2,X3,X4≥0 	L3 CO1 12M
5. Solve the following Degeneracy in simplex method Maximize $3X_1 + 9X_2$. Subjected to $X_1 + 4X_2 \le 8$, $X_1 + 2X_2 \le 4$, X_1 , $X_2 \ge 0$	L3 CO1 12M
6. Find the Geometrical solution maximize $Z = 6X_1+10X_2$, Subject to the constraints $X_1+X_2 < 70$, $X_1 < 40$, $X_2 > 20$, $2X_1+3X_2 < 300$.	L3 CO1 12M
$\begin{array}{l} X_1, X_2, X_3 \geq 0 \\ \hline \end{array}$ 7. Solve following by using Big-M Method Maximize Z = 6X ₁ +4 X ₂ , Subjected to 2X ₁ + 3X ₂ < 30, 3X ₁ + 2X ₂ < 24, X ₁ + X ₂ > 3, X ₁ , X ₂ > 0	L3 CO1 12M
 8. (a) Discuss the applications of Operations Research (b) Explain the procedure to solve the LPP 9. (a) Define operations research. How OR is useful for decision makers (b) Discuss the importance model in the solution of OR problem (c).What are the limitations of linear programming technique 10. (a)What are the characteristics of operation Research (b) Discuss the types of operation Research models 	L2 CO1 6M L2 CO1 6M L1 CO1 4M L2 CO1 4M L1 CO1 4M L1 CO1 6M L2 CO1 6M

Operations Research

Course Code: 19ME0325 <u>**T** - II</u> <u>TRANSPORTAION PROBLEM AND ASSIGNMENT PROBLEM</u>

1. Solve the following transportation problem to maximize profit

1

В С D SUPPLY А Р 40 25 22 23 100 Q 44 30 35 30 30 R 38 70 38 28 30 DEMAND 20 30 40 60

2. Determine the basic Feasible solution to the following Transportation problem using NWC, VCM and VAM?

	Α	В	С	D	Е	SUPPLY
Р	2	11	10	3	7	4
Q	1	4	7	2	1	8
R	3	9	4	8	12	9
DEMAND	3	3	4	5	6	

3. Solve the following transportation problem Determine the Shipping scheme by the Northwest corner Rule. L3 L5 CO2 12M

	А	В	С	D	AVAILABLE
Р	4	6	8	13	50
Q	13	11	10	8	70
R	14	4	10	13	30
S	9	11	13	8	50
REQUIRED	25	35	105	20	

4. A as salesman has visits of Five cities A,B,C,D and E the distance between the five cities is as Follows. If the salesman starts from city A and has to come back to his starting point, which route is should be select So that the total distance travelled in minimum.

C

D

E

L4 CO2 12M

7 6 8 4 А _ В 7 8 5 6 -С 9 7 6 8 -5 D 8 9 8 -Е 4 6 7 8 -

B

Α

8

5. The processing time in hours for the jobs when allocated to the different machines is indicated below. Assign the machines for the jobs so that the total processing time in minimum L3 CO2 12M

MACHINES

		1	2	3	4	5
	1	9	22	-58	11	19
- [2	43	78	72	50	63
	3	41	28	91	37	45
	4	74	42	29	49	39
	5	36	11	57	22	25

R19

L3 CO2 12M

L5 CO2 12M

6. A Department has 5 employees and five jobs are to be performed. The time each man will take to perform each job is given in the following table below. How the job should be Allocated one per employee, so as to minimize the total man-hours.

MACHINES	Α	B	С	D	Ε
JOBS					
1	9	3	10	13	4
2	8	17	13	20	5
3	5	14	8	11	6
4	11	13	9	12	3
5	12	8	14	16	7

7. Consider the problem of assigning five operators to five machines. The assignment costs are given in following Table
 L1 L3 CO2 12M

	М	М	М	М	М
	1	2	3	4	5
Α	7	7	-	4	8
В	9	6	4	5	6
С	11	5	7	-	5
D	9	4	8	9	4
E	8	7	9	11	11

Operator A cannot be assigned to machine M3 and operator C cannot be assigned to machine M4. Find the optimum assignment schedule

8. Find the minimum transportation cost for the following data.

L1 L6 CO2 12M

		Α	В	С	D	E	F	Available
	1	9	12	9	6	9	10	5
Factory	2	7	3	7	7	5	5	6
,	3	6	5	9	11	3	11	2
	4	6	8	11	2	2	10	9
	Requirement	4	4	6	2	4	2	

 There are three parties who supply the following quantities of coal and three consumers who require the coal as follows Find the minimum transportation cost.
 L1 L6 CO2 12M

Party 1:	14 tons	consumer A :	6 tons
Party 2:	12 tons	consumer B :	10 tons
Party 3:	5 tons	consumer C :	15 tons

The cost Matrix is as shown below

	А	В	С
1	6	8	4
2	4	9	3
3	1	2	6

10. (a). What is Transportation Problem?

(b) What do you mean by balanced transportation problem?

(c). What is travelling salesman problem?

L1 CO2 4M L1 CO2 4M L1 CO2 4M

R19

Operations Research

<u>UNIT-III</u> GAME THEORY AND QUEING THEORY

1. (a). Find the saddle point following GAME?

	Payer B							
A		Ι	II	III	IV	V		
er .	Ι	9	3	1	8	0		
lay.	Π	6	5	4	6	7		
Ρ	III	2	4	4	3	8		
	IV	5	6	2	2	1		

(b). Find the optimal strategy of following GAME?

	Payer B							
ΓA		Ι	Π	III				
yeı	Ι	-3	-2	6				
Pla	II	2	0	2				
	III	5	-2	-4				

2. (a). Find the saddle point following GAME?

		Pay	er B	
A		B1	B2	B3
er	A1	-3	-1	6
lay	A2	2	0	2
Π	A3	5	-2	-4

(b). Explain Pure strategy and Mixed strategy.

3. Solve the following GAME, using the Dominance Principle.

A		F	'irm l	B	
rm	4	6	5	10	6
Ē	7	8	5	9	10
	8	9	11	10	9
	6	4	10	6	4

4. Use the relation of Dominance to solve the game matrix.

		I					
		Bl	B2	B3	B4	B5	B6
A	Al	4	2	0	2	1	1
irm	A2	4	3	1	3	2	2
F	A3	4	3	7	-5	1	2
	A4	4	3	4	-1	2	2
	A5	4	3	3	-2	2	2

Operations Research

L2 CO3 6M

L3 CO3 12M

L3 CO3 12M

L1 CO3 6M

L1 CO3 6M

L1 CO3 6M

- 5. Consider a self-service store with one cashier. Assume Poisson arrivals and exponential service times. Suppose that 9 customers arrive on the average every 5 minutes and the cashier can serve
 - 10 in 5 minutes, Find
 - a) Average number of customers queuing for service
 - b) Probability of having more than 10 customers in the system. c) Probability that a customer has to queue for more than 2 minutes

L1 L3 CO3 12M

6. In a railway marshalling yard, goods trains arrive at a rate of 30 trains per day, assuming that the inter-arrival time follows an exponential distribution and the service time distribution is also exponential with an average of 36 minutes. Calculate a).Expected queue size b).Probability that the queue size exceeds 10. If the input of trains increases to an average of 33 per day what will be the change in (a) and (b).

L3 L5 CO3 12M

L1 CO3 12M

A Company distributes its products by trucks loaded and its only loading station, both company's trucks and conductor truck's are used for this purpose. It was found that an average of every 5 minutes. One truck is arrived and the average loading time is 3 minutes. 50% of the trucks belong to the contractor Find out 1.Probability that truck has to wait 2. waiting time of truck that waits 3. Expected time for contractor truck per day assuming 24 – hr shift.

8. (a) State briefly the applications of queuing models.(b) Briefly explain i) queue ii) infinite queue iii) queue models	L1 CO3 6M L1 CO3 6M
9. (a) What is game theory? What are the various types of games?(b) What is Queuing Theory and what are the elements of Queuing system?	L1 CO3 6M L1 CO3 6M
10. (a) Discuss i) Server ii) Arrival rate iii) Service rate(b)What are the limitations for Applications of queuing Theory?	L6 CO3 6M L1 CO3 6M

UNIT -IV

PERT & CPM

1 A project has the following schedule. Construct PERT network & compute the total float for each activity. Find critical path and its duration .Also calculate Total Float, Free Float.

L1 L4 CO4 12M

LI L6 CO4 12M

Activity	1-2	1-3	2-4	3-4	3-5	4-9	5-6
Time in	4	1	1	1	6	5	4
weeks		1	1	1	0	5	-
Activity	5-7	6-8	7-8	8-9	8-10	9-10	
Time in	Q	1	2	1	Q	7	
weeks	0	1	2	1	0	/	

2. Find the critical path and calculate the Total float, Free float.

3. A project has the following schedule. Construct PERT network and compute the total float for each activity. Find critical path with its duration. L1 L3 CO4 12M

Activity	Time in	Activity	Time in	Activity	Time in
	month		month		month
1-2	2	3-6	8	6-9	5
1-3	2	3-7	5	7-8	4
1-4	1	4-6	3	8-9	3
2-5	4	5-8	1		

- 4. (a) List similarities and differences between PERT and CPM (b). State the rules for drawing network diagram.
 - (c) What is line of balance and Define total elapsed time
- 5. A project has the following schedule. Construct PERT network and compute the total float for each L1 L5 CO4 12M activity Find critical path and its duration .

Activity	Time in month	Activity	Time in month	Activity	Time in month
1-2	2	3-6	1	6-9	3
1-4	2	4-5	5	7-8	3
1-7	1	4-8	8	8-9	3
2-3	4	5-6	4		

Operations Research

L1 CO4 4M L1 CO4 4M

L1 CO4 4M

6. Construct PERT network and compute the total float for each activity Find critical path and its duration. L1 L3 CO4 12M

Activity	Time	Activity	Time
1-2	2	4-6	3
1-3	2	5-8	1
1-4	Ι	6-8	5
2-5	4	7-8	4
3-6	8	8-9	3
3-7	5		

7. A project schedule has the following characteristics

Time Time Activity Activity 1-2 2 4-8 8 2 1-4 5-6 4 3 1-7 6-9 Ι 2-3 3 4 7-8 3-6 1 8-9 5 4-5 5

Construct i) PERT network

ii) Find critical path and Time duration of the project

8. Find the critical path and calculate the slack time for each event for the following PERT diagram. L1 L6 CO4 12M

- 9. (a) Explain the Forward Pass computations for Earliest Event Time in detail
 (b) Discuss the Backward pass computations for Latest Allowable Time in detail
 L2 CO4 6M
 L6 CO4 6M
- 10. (a) Explain the following a) critical event b) critical activity c) Total float D) Free float L2 CO4 6M
 (b) What is meant by critical path and explain the main features of critical path? L1 L6 CO4 6M

R19

L1 L6 CO4 12M

UNIT-V

INTRODUCTION TO MAINTENACE & SEQUENCING

1. The cost of a machine is Rs6100 and its scrap value is Rs.100.The maintenance costs found From experience are as follows. When should the machine be replaced? L5 CO5 12M

Year (n)	1	2	3	4	5	6	7	8
Running M/C Cost in Rs	100	250	400	600	900	1200	1600	2000

2. A truck owner from his past records that the maintenance costs per year of a truck whose Purchase price is Rs.8000 are as given below. When should the machine be replaced?

L5 CO5 12M

Year (n)	1	2	3	4	5	6	7	8
Running cost	1000	1200	1700	2000	2000	2800	4800	6000
(MC)in Rs.	1000	1500	1700	2000	2900	3000	4000	0000
Resale	4000	2000	1200	600	500	400	400	400
Price(Rs)	4000	2000	1200	600	300	400	400	400

 3. Assume that present value of one rupee to be spent in a years' time is Re.0.90 and C=Rs 6000, Capital cost of equipment .Running costs are given in the table below. When should the machine be replaced?
 L5 CO5 12M

Year (n)	1	2	3	4	5	6	7
Running cost (MC)in Rs.	1000	1200	1600	2000	2600	3200	4000

4. A manufacturer finds from his past records that casts per year associated with a machine

With a purchase price of Rs 50,000/- are as given below. Determine the optimum policy?

L5 CO5 12M

Year (n)	1	2	3	4	5	6	7	8
Running cost	15000	16000	18000	21000	25000	29000	34000	40000
(MC)in Rs.								
Scrap value	35000	25000	17000	12000	10000	5000	4000	4000

5. Determine the sequence for the jobs and the total elapsed time ?

15	CO5	12M
	cos	

	A	B	С	D	Ε	F	G	Η	Ι
Machine1	4	7	6	11	8	10	9	7	6
Machine2	8	10	9	6	5	11	5	10	13

6. Find the sequence that minimizes the total elapsed time required to complete the following Tasks on the machines in the order 1 - 2 - 3. Find also the minimum total elapsed time and the ideal times on the machines? L1 L3 CO5 12M

Operations Research

		A	B	С	D	E	F	G
n nes	1	3	8	7	4	9	8	7
sks ne o achi	2	4	3	2	5	1	4	3
Ta tin M:	3	6	7	5	11	5	6	12

7. (a) What is mean by sequencing Problem and Define total elapsed time ? (b) Determine the sequence for the jobs and the total elapsed time?

Job	A	B	С	D	Ε
Machine1	3	7	4	5	7
Machine2	8	2	7	3	4

8. Determine a sequence for five jobs that will minimize the elapsed time T and also calculate the total L3 CO5 12M Idle time for machines in this period?

							<u>_</u>
			Processin	g Time (hour	s)		
	Job	1	2	3	4	5	
	Time for	5	1	9	3	10	-
	Time for B	2	6	7	8	4	_
(a)What a (b) Explai	re the seque n Failure m	ential steps echanism i	involved in s tems.	equencing jo	bs?		L1 C05 4M L2 C05 4M
(c) Discus	(c) Discuss briefly about Individual Replacement model.						
(a) Explain the Bellman's principle of optimality							L2 CO5 6M
(b)Descri	be the vario	us types of	replacement	situations and	d Explain abo	out group	
Replacement.							L1 CO5 6M

9.

10.